Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068886

RESUMO

(1) Lipases are catalysts widely applied in industrial fields. To sustain the harsh treatments in industries, optimizing lipase activities and thermal stability is necessary to reduce production loss. (2) The thermostability of Thermomyces lanuginosus lipase (TLL) was evaluated via B-factor analysis and consensus-sequence substitutions. Five single-point variants (K24S, D27N, D27R, P29S, and A30P) with improved thermostability were constructed via site-directed mutagenesis. (3) The optimal reaction temperatures of all the five variants displayed 5 °C improvement compared with TLL. Four variants, except D27N, showed enhanced residual activities at 80 °C. The melting temperatures of three variants (D27R, P29S, and A30P) were significantly increased. The molecular dynamics simulations indicated that the 25-loop (residues 24-30) in the N-terminus of the five variants generated more hydrogen bonds with surrounding amino acids; hydrogen bond pair D254-I255 preserved in the C-terminus of the variants also contributes to the improved thermostability. Furthermore, the newly formed salt-bridge interaction (R27…E56) in D27R was identified as a crucial determinant for thermostability. (4) Our study discovered that substituting residues from the 25-loop will enhance the stability of the N-terminus and C-terminus simultaneously, restrict the most flexible regions of TLL, and result in improved thermostability.


Assuntos
Eurotiales , Lipase , Lipase/metabolismo , Eurotiales/genética , Eurotiales/metabolismo , Temperatura , Mutagênese Sítio-Dirigida , Estabilidade Enzimática
2.
N Z Vet J ; 71(5): 267-274, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37173868

RESUMO

CASE HISTORY: A 4-year-old, male neutered Borzoi presented for unlocalised pain and frequent episodes of vocalisation. CLINICAL FINDINGS: Pain was localised to the lumbar spine and radiographs revealed a L3-L4 lesion consistent with discospondylitis. The dog was treated for presumptive bacterial discospondylitis with surgical debridement, spinal stabilisation, and cephalexin. Samples collected from the affected intervertebral disc at the time of surgery revealed lymphoplasmacytic inflammation with no causative agent identified on histopathology or bacterial culture. After an initial period of improvement, signs recurred despite an 8-week antibiotic course, with the development of inappetence, weight loss, polydipsia, and polyuria. Repeat radiographs revealed a new cervical intervertebral lesion, and concurrent pyelonephritis was diagnosed based on blood and urine results. Fungal culture of urine resulted in growth of Rasamsonia argillacea species complex and disseminated fungal disease was clinically diagnosed. Antifungal treatment was commenced, however the dog deteriorated, and euthanasia was performed. PATHOLOGICAL FINDINGS: Multifocal white plaques were grossly visualised in the spleen, mesenteric lymph nodes, cervical vertebrae, and kidneys. Periodic acid-Schiff-positive, fine, parallel-walled, occasionally branching, septate hyphae 5-10 µm in diameter, and conidia 5-7 µm in diameter were found on sectioning all organs. R. argillacea species complex was identified by fungal culture of urine and was considered the species of fungal organism seen histologically. The isolate was subsequently confirmed as R. argillacea by DNA sequencing. DIAGNOSIS: Disseminated Rasamsonia argillacea infection. CLINICAL RELEVANCE: Rasamsonia argillacea species complex is a recognised invasive mycosis in veterinary medicine, with disseminated disease causing significant clinical complications and death. This is believed to be the first report of infection caused by R. argillacea in a dog in Australasia and highlights the importance of awareness of a potential fungal aetiology in dogs with discospondylitis.Abbreviations: CLSI: Clinical and Laboratory Standards Institute; CRI: Constant rate infusion; MEC: Minimum effective concentration; MIC: Minimum inhibitory concentration; PAS: Periodic acid-Schiff.


Assuntos
Doenças do Cão , Eurotiales , Micoses , Cães , Masculino , Animais , Ácido Periódico/farmacologia , Antifúngicos/uso terapêutico , Micoses/tratamento farmacológico , Micoses/veterinária , Micoses/diagnóstico , Eurotiales/genética , Doenças do Cão/microbiologia
3.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012226

RESUMO

Lipases are remarkable biocatalysts and are broadly applied in many industry fields because of their versatile catalytic capabilities. Considering the harsh biotechnological treatment of industrial processes, the activities of lipase products are required to be maintained under extreme conditions. In our current study, Gibbs free energy calculations were performed to predict potent thermostable Thermomyces lanuginosus lipase (TLL) variants by Rosetta design programs. The calculating results suggest that engineering on R209 may greatly influence TLL thermostability. Accordingly, ten TLL mutants substituted R209 were generated and verified. We demonstrate that three out of ten mutants (R209H, R209M, and R209I) exhibit increased optimum reaction temperatures, melting temperatures, and thermal tolerances. Based on molecular dynamics simulation analysis, we show that the stable hydrogen bonding interaction between H198 and N247 stabilizes the local configuration of the 250-loop in the three R209 mutants, which may further contribute to higher rigidity and improved enzymatic thermostability. Our study provides novel insights into a single residue, R209, and the 250-loop, which were reported for the first time in modulating the thermostability of TLL. Additionally, the resultant R209 variants generated in this study might be promising candidates for future-industrial applications.


Assuntos
DEET , Eurotiales , Eurotiales/genética , Lipase/química , Lipase/genética , Mutação
4.
Biotechnol Bioeng ; 118(12): 4623-4634, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34427915

RESUMO

The standalone metallo-ß-lactamase-type thioesterase (MßL-TE), belongs to the group V nonreducing polyketide synthase agene cluster, catalyzes the rate-limiting step of product releasing. Our work first investigated on the orthologous MßL-TEs from different origins to determine which nonconserved amino acid residues are important to the hydrolysis efficiency. A series of chimeric MßL-TEs were constructed by fragment swapping and site-directed mutagenesis, in vivo enzymatic assay showed that two nonconserved residues A19 and E75 (numbering in HyTE) were critical to the catalytic performance. Protein structure modeling suggested that these two residues are located in different areas of HyTE. A19 is on the entrance to the active sites, whereas E75 resides in the linker between the two ß strands which hold the metal-binding sites. Combining with computational simulations and comparative enzymatic assay, different screening criteria were set up for selecting the variants on the two noncatalytic and nonconserved key residues to improve the catalytic activity. The rational design on A19 and E75 gave five candidates in total, two (A19F and E75Q) of which were thus found significantly improved the enzymatic performance of HyTE. The double-point mutant was constructed to further improve the activity, which was increased by 28.4-fold on product accumulation comparing to the wild-type HyTE. This study provides a novel approach for engineering on nonconserved residues to optimize enzymatic performance.


Assuntos
Sítios de Ligação/genética , Mutagênese Sítio-Dirigida/métodos , Tioléster Hidrolases , beta-Lactamases , Antracenos/metabolismo , Estabilidade Enzimática/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Eurotiales/enzimologia , Eurotiales/genética , Proteínas Fúngicas/genética , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tioléster Hidrolases/química , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , beta-Lactamases/química , beta-Lactamases/genética , beta-Lactamases/metabolismo
5.
Biotechnol Lett ; 43(7): 1403-1411, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33834350

RESUMO

OBJECTIVES: This study was aimed at engineering charged residues on the surface of Thermomyces lanuginosus lipase (TLL) to obtain TLL variant with elevated performance for industrial applications. RESULTS: Site-directed mutagenesis of eight charged amino acids on the TLL surface were conducted and substitutions on the negatively charged residues D111, D158, D165, and E239 were identified with elevated specific activities and biodiesel yields. Synergistic effect was not discovered in the double mutants, D111E/D165E and D165E/E239R, when compared with the corresponding single mutants. One TLL mutant, D165E, was identified with increased specific activity (456.60 U/mg), catalytic efficiency (kcat/Km: 44.14 s-1 mM-1), the highest biodiesel conversion yield (93.56%), and comparable thermostability with that of the TLL. CONCLUSIONS: Our study highlighted the importance of surface charge engineering in improving TLL activity and biodiesel production, and the resulting TLL mutant, D165E, is a promising candidate for biodiesel industry.


Assuntos
Eurotiales/enzimologia , Lipase/metabolismo , Mutagênese Sítio-Dirigida/métodos , Substituição de Aminoácidos , Biocatálise , Biocombustíveis , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Eurotiales/genética , Proteínas Fúngicas/metabolismo , Lipase/genética , Engenharia de Proteínas
6.
Appl Biochem Biotechnol ; 193(3): 668-686, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33135129

RESUMO

Natural products are considered to be the lifeline treatment for several diseases where their structural complexity makes them a source of potential lead molecules. As a producer of antibiotics, food colorants, enzymes, and nutritious food, fungi are beneficial to humans. Fungi, as a source of novel natural products, draw attention of scientists. However, redundant isolation of metabolite retards the rate of discovery. So, apart from the standard conditions for the production of secondary metabolites, certain induction strategies are used to trigger biosynthetic genes in fungi. Advancement in the computational tools helps in connecting gene clusters and their metabolite production. Therefore, modern analytical tools and the genomic era in hand leads to the identification of manifold of cryptic metabolites. The cryptic biosynthetic gene cluster (BGC) has become a treasure hunt for new metabolites representing biosynthetic pathways, regulatory mechanisms, and other factors. This review includes the use of chemical inducers/epigenetic modifiers and co-culture (species interaction) techniques to induce these BGCs. Furthermore, it cites a detailed representation of molecules isolated using these strategies. Since the induction occurs on the genomic molecular DNA and histones, this together brings a significant exploration of the biosynthetic pathways.Graphical Abstract.


Assuntos
Aspergillus nidulans/crescimento & desenvolvimento , Vias Biossintéticas , Eurotiales/crescimento & desenvolvimento , Metabolismo Secundário , Aspergillus nidulans/genética , Produtos Biológicos/metabolismo , Técnicas de Cocultura , Eurotiales/genética
7.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32769197

RESUMO

Thermomyces dupontii, a widely distributed thermophilic fungus, is an ideal organism for investigating the mechanism of thermophilic fungal adaptation to diverse environments. However, genetic analysis of this fungus is hindered by a lack of available and efficient gene-manipulating tools. In this study, two different Cas9 proteins from mesophilic and thermophilic bacteria, with in vivo expression of a single guide RNA (sgRNA) under the control of tRNAGly, were successfully adapted for genome editing in T. dupontii We demonstrated the feasibility of applying these two gene editing systems to edit one or two genes in T. dupontii The mesophilic CRISPR/Cas9 system displayed higher editing efficiency (50 to 86%) than the thermophilic CRISPR/Cas9 system (40 to 67%). However, the thermophilic CRISPR/Cas9 system was much less time-consuming than the mesophilic CRISPR/Cas9 system. Combining the CRISPR/Cas9 systems with homologous recombination, a constitutive promoter was precisely knocked in to activate a silent polyketide synthase-nonribosomal peptide synthase (PKS-NRPS) biosynthetic gene, leading to the production of extra metabolites that did not exist in the parental strains. Metabolic analysis of the generated biosynthetic gene mutants suggested that a key biosynthetic pathway existed for the biosynthesis of thermolides in T. dupontii, with the last two steps being different from those in the heterologous host Aspergillus Further analysis suggested that these biosynthetic genes might be involved in fungal mycelial growth, conidiation, and spore germination, as well as in fungal adaptation to osmotic, oxidative, and cell wall-perturbing agents.IMPORTANCEThermomyces represents a unique ecological taxon in fungi, but a lack of flexible genetic tools has greatly hampered the study of gene function in this taxon. The biosynthesis of potent nematicidal thermolides in T. dupontii remains largely unknown. In this study, mesophilic and thermophilic CRISPR/Cas9 gene editing systems were successfully established for both disrupting and activating genes in T. dupontii In this study, a usable thermophilic CRISPR/Cas9 gene editing system derived from bacteria was constructed in thermophilic fungi. Chemical analysis of the mutants generated by these two gene editing systems identified the key biosynthetic genes and pathway for the biosynthesis of nematocidal thermolides in T. dupontii Phenotype analysis and chemical stress experiments revealed potential roles of secondary metabolites or their biosynthetic genes in fungal development and adaption to chemical stress conditions. These two genomic editing systems will not only accelerate investigations into the biosynthetic mechanisms of unique natural products and functions of cryptic genes in T. dupontii but also offer an example for setting up CRISPR/Cas9 systems in other thermophilic fungi.


Assuntos
Sistemas CRISPR-Cas , Eurotiales/genética , Genes Fúngicos , Recombinação Homóloga , RNA Guia de Cinetoplastídeos/genética , Adaptação Fisiológica/genética , Eurotiales/metabolismo , Edição de Genes
8.
Biotechnol Bioeng ; 117(2): 382-391, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31631319

RESUMO

Understanding the pH effect of cellulolytic enzymes is of great technological importance. In this study, we have examined the influence of pH on activity and stability for central cellulases (Cel7A, Cel7B, Cel6A from Trichoderma reesei, and Cel7A from Rasamsonia emersonii). We systematically changed pH from 2 to 7, temperature from 20°C to 70°C, and used both soluble (4-nitrophenyl ß- d-lactopyranoside [pNPL]) and insoluble (Avicel) substrates at different concentrations. Collective interpretation of these data provided new insights. An unusual tolerance to acidic conditions was observed for both investigated Cel7As, but only on real insoluble cellulose. In contrast, pH profiles on pNPL were bell-shaped with a strong loss of activity both above and below the optimal pH for all four enzymes. On a practical level, these observations call for the caution of the common practice of using soluble substrates for the general characterization of pH effects on cellulase activity. Kinetic modeling of the experimental data suggested that the nucleophile of Cel7A experiences a strong downward shift in pKa upon complexation with an insoluble substrate. This shift was less pronounced for Cel7B, Cel6A, and for Cel7A acting on the soluble substrate, and we hypothesize that these differences are related to the accessibility of water to the binding region of the Michaelis complex.


Assuntos
Celulases/química , Celulases/metabolismo , Celulose/química , Celulose/metabolismo , Sítios de Ligação , Celulases/genética , Estabilidade Enzimática , Eurotiales/enzimologia , Eurotiales/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Hypocreales/enzimologia , Hypocreales/genética , Cinética , Modelos Moleculares , Ligação Proteica , Temperatura
9.
Sci Rep ; 9(1): 16169, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700110

RESUMO

Lipases are interfacially activated enzymes that catalyze the hydrolysis of ester bonds and constitute prime candidates for industrial and biotechnological applications ranging from detergent industry, to chiral organic synthesis. As a result, there is an incentive to understand the mechanisms underlying lipase activity at the molecular level, so as to be able to design new lipase variants with tailor-made functionalities. Our understanding of lipase function primarily relies on bulk assay averaging the behavior of a high number of enzymes masking structural dynamics and functional heterogeneities. Recent advances in single molecule techniques based on fluorogenic substrate analogues revealed the existence of lipase functional states, and furthermore so how they are remodeled by regulatory cues. Single particle studies of lipases on the other hand directly observed diffusional heterogeneities and suggested lipases to operate in two different modes. Here to decipher how mutations in the lid region controls Thermomyces lanuginosus lipase (TLL) diffusion and function we employed a Single Particle Tracking (SPT) assay to directly observe the spatiotemporal localization of TLL and rationally designed mutants on native substrate surfaces. Parallel imaging of thousands of individual TLL enzymes and HMM analysis allowed us to observe and quantify the diffusion, abundance and microscopic transition rates between three linearly interconverting diffusional states for each lipase. We proposed a model that correlate diffusion with function that allowed us to predict that lipase regulation, via mutations in lid region or product inhibition, primarily operates via biasing transitions to the active states.


Assuntos
Eurotiales/enzimologia , Proteínas Fúngicas/química , Lipase/química , Mutação , Eurotiales/genética , Proteínas Fúngicas/genética , Lipase/genética
10.
Mycoses ; 61(9): 665-673, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29702751

RESUMO

Infections caused by Rasamsonia argillacea complex have been reported in various clinical settings. Cystic fibrosis (CF) is one of the main underlying conditions. An observational cohort study of CF patients with Rasamsonia in respiratory samples was conducted. Eight isolates from 6 patients were identified as R. argillacea complex and tested for antifungal susceptibility. All isolates had high MICs to voriconazole and posaconazole and low MECs to echinocandins. Four patients experienced lung function decline in the year preceding first Rasamsonia isolation. This continued in the year following first isolation in 3 out of 4 cases. Antifungal therapy was initiated in 2 patients, to which only one exhibited a clinical response. Three out of 6 patients died within 3 years of isolating Rasamsonia. Genotyping suggests that similar genotypes of Rasamsonia can persist in CF airways. Consistent with other fungi in CF, the clinical impact of airway colonisation by Rasamsonia is variable. In certain patients, Rasamsonia may be able to drive clinical decline. In others, though a clear impact on lung function may be difficult to determine, the appearance of Rasamsonia acts as a marker of disease severity. In others it does not appear to have an obvious clinical impact on disease progression.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Doenças Transmissíveis Emergentes/microbiologia , Fibrose Cística/complicações , Farmacorresistência Fúngica , Eurotiales/isolamento & purificação , Pneumopatias Fúngicas/microbiologia , Adulto , Criança , Estudos de Coortes , Equinocandinas/farmacologia , Eurotiales/classificação , Eurotiales/efeitos dos fármacos , Eurotiales/genética , Feminino , Genótipo , Técnicas de Genotipagem , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Técnicas de Tipagem Micológica , Adulto Jovem
11.
Appl Biochem Biotechnol ; 184(3): 1047-1060, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28942502

RESUMO

Several filamentous fungi are able to concomitantly assimilate both aliphatic and polycyclic aromatic hydrocarbons that are the biogenic by-products of some industrial processes. Cytochrome P450 monooxygenases catalyze the first oxidation reaction for both types of substrate. Among the cytochrome P450 (CYP) genes, the family CYP52 is implicated in the first hydroxylation step in alkane-assimilation processes, while genes belonging to the family CYP53 have been linked with oxidation of aromatic hydrocarbons. Here, we perform a comparative analysis of CYP genes belonging to clans CYP52 and CYP53 in Aspergillus niger, Beauveria bassiana, Metarhizium robertsii (formerly M. anisopliae var. anisopliae), and Penicillium chrysogenum. These species were able to assimilate n-hexadecane, n-octacosane, and phenanthrene, exhibiting a species-dependent modification in pH of the nutrient medium during this process. Modeling of the molecular docking of the hydrocarbons to the cytochrome P450 active site revealed that both phenanthrene and n-octacosane are energetically favored as substrates for the enzymes codified by genes belonging to both CYP52 and CYP53 clans, and thus appear to be involved in this oxidation step. Analyses of gene expression revealed that CYP53 members were significantly induced by phenanthrene in all species studied, but only CYP52X1 and CYP53A11 from B. bassiana were highly induced with n-alkanes. These findings suggest that the set of P450 enzymes involved in hydrocarbon assimilation by fungi is dependent on phylogeny and reveal distinct substrate and expression specificities.


Assuntos
Sistema Enzimático do Citocromo P-450 , Eurotiales , Proteínas Fúngicas , Hidrocarbonetos Cíclicos/metabolismo , Hypocreales , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Eurotiales/enzimologia , Eurotiales/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hypocreales/enzimologia , Hypocreales/genética
12.
FEMS Yeast Res ; 17(6)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922845

RESUMO

In biotechnological industry, increased expression cassette stability and copy number serve as important means of maintaining consistently high production levels of heterologous proteins in Saccharomyces cerevisiae. In this study, we combined δ sequences for site-specific integration with TPI1 gene from Schizosaccharomyces pombe (POT1) as a selection marker to realize high-copy integration and stable expression of heterologous proteins in S. cerevisiae. With the newly developed POT1 platform, a 32-copy integration of enhanced green fluorescent protein (EGFP) expression cassette was obtained in a single round and was stably maintained after 100 generations of growth in a rich complex medium. Talaromyces emersonii cellobiohydrolase I gene was synthesized with S. cerevisiae codon bias and expressed under the control of TPI1 promoter and terminator via POT1-mediated δ-integration; the highest specific activity yielded 238 mU g-1 of dry cell weight when p-nitrophenyl-ß-D-cellobioside was used as substrate, whereas the highest activity in cellulose hydrolysis reached 67% Avicel conversion. POT1-mediated δ-integration produces high protein levels over a wide dynamic range and enables broad applications in metabolic engineering and synthetic biology.


Assuntos
Dosagem de Genes , Expressão Gênica , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Celulose 1,4-beta-Celobiosidase/análise , Celulose 1,4-beta-Celobiosidase/genética , Eurotiales/enzimologia , Eurotiales/genética , Genes Reporter , Instabilidade Genômica , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas Recombinantes/biossíntese , Recombinação Genética , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética
13.
Fungal Genet Biol ; 103: 42-54, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28412478

RESUMO

The ATP-dependent Lon enzyme is a highly conserved protease with multiple roles in diverse species such as fungi; however, there are few reports on Lon enzymes in filamentous fungi. Thermomyces lanuginosus, a typical thermophilic fungus, has been widely studied in physiology and cell biology; thus, studies on Thermomyces Lons are important. Two Lons were bioinformatically deduced in T. lanuginosus. Subcellular localization analysis showed that one is present in mitochondria (MLon), while the other is found in peroxisomes (PLon). Although both Lon enzymes were activated by H2O2, they were not induced by heat shock; instead, they were induced by low temperatures. Two single-deletion Lon mutants (ΔMLon and ΔPLon) were generated. Biological analysis demonstrated that ΔMLon decreased the production of conidia but increased the growth of mycelia. By contrast, ΔPLon increased the production of conidia but decreased the growth of mycelia. The lifespan was measured in time and in length of continuous growth. The wild-type strain showed continuous linear growth for 60days, whereas growth was impeded at 30 and 50days for ΔPLon and ΔMLon mutants, respectively, suggesting that PLon is more important for longevity than MLon. Interestingly, ΔPLon, which accumulated larger amount of H2O2 was not only more sensitive to exogenous H2O2 but also much more sensitive to other selected stressors. Taken together, our data indicate that mitochondrial and peroxisomal Lons play opposite roles in controlling growth and development, but exhibit synergistic effects on the normal states of vegetative growth, asexual development, stress resistance and longevity in T. lanuginosus.


Assuntos
Eurotiales/genética , Longevidade/genética , Protease La/genética , Reprodução/genética , Eurotiales/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , Resposta ao Choque Térmico/genética , Peróxido de Hidrogênio/farmacologia , Mitocôndrias/enzimologia , Peroxissomos/enzimologia , Protease La/biossíntese , Reprodução Assexuada/genética
14.
Biotechnol Bioeng ; 114(1): 53-62, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27424518

RESUMO

Cel7A cellobiohydrolases perform processive hydrolysis on one strand of cellulose, which is threaded through the enzyme's substrate binding tunnel. The tunnel structure results from a groove in the catalytic domain, which is covered by a number of loops. These loops have been identified as potential targets for engineering of this industrially important enzyme family, but only few systematic studies on this have been made. Here we show that two asparagine residues (N194 and N197) positioned in the loop covering the glucopyranose subsite -4 (recently denoted B2 loop) of the thermostable Cel7A from Rasamsonia emersonii had profound effects on both substrate interactions and catalytic efficacy. At room temperature the double mutant N194A/N197A showed strongly reduced substrate affinity with a water-cellulose partitioning coefficient threefold lower than the wild type. Yet, this variant was catalytically efficient with a maximal turnover about twice as high as the wild type. Analogous but smaller changes were found for the single mutants. Analysis of these changes in affinity and kinetics as a function of temperature, led to the conclusion that replacement of N194 and particularly N197 with alanine leads to faster enzyme-substrate dissociation. Conversely, these residues appeared to have little or no effect on the rate of association. We suggest that the controlled adjustment of the enzyme-substrate dissociation prompts faster cellulolytic enzymes. Biotechnol. Bioeng. 2017;114: 53-62. © 2016 Wiley Periodicals, Inc.


Assuntos
Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Eurotiales/enzimologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Engenharia de Proteínas/métodos , Celulose/análise , Celulose 1,4-beta-Celobiosidase/química , Eurotiales/genética , Proteínas Fúngicas/química , Cinética , Modelos Moleculares , Temperatura
15.
J Clin Microbiol ; 54(11): 2804-2812, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27605712

RESUMO

The aim of this work was to document molecular epidemiology of Rasamsonia argillacea species complex isolates from cystic fibrosis (CF) patients. In this work, 116 isolates belonging to this species complex and collected from 26 CF patients and one patient with chronic granulomatous disease were characterized using PCR amplification assays of repetitive DNA sequences and electrophoretic separation of amplicons (rep-PCR). Data revealed a clustering consistent with molecular species identification. A single species was recovered from most patients. Rasamsonia aegroticola was the most common species, followed by R. argillacea sensu stricto and R. piperina, while R. eburnea was not identified. Of 29 genotypes, 7 were shared by distinct patients while 22 were patient specific. In each clinical sample, most isolates exhibited an identical genotype. Genotyping of isolates recovered from sequential samples from the same patient confirmed the capability of R. aegroticola and R. argillacea isolates to chronically colonize the airways. A unique genotype was recovered from two siblings during a 6-month period. In the other cases, a largely dominant genotype was detected. Present results which support the use of rep-PCR for both identification and genotyping for the R. argillacea species complex provide the first molecular evidence of chronic airway colonization by these fungi in CF patients.


Assuntos
Fibrose Cística/complicações , Eurotiales/classificação , Eurotiales/isolamento & purificação , Micoses/diagnóstico , Micoses/epidemiologia , Reação em Cadeia da Polimerase/métodos , Análise por Conglomerados , Eletroforese , Eurotiales/genética , Genótipo , Humanos , Técnicas Microbiológicas/métodos , Epidemiologia Molecular , Micoses/microbiologia , Sequências Repetitivas de Ácido Nucleico/genética
16.
PLoS One ; 11(6): e0158207, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27359330

RESUMO

Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 µM-1min-1mL) and cellulases (62.11±1.6 µM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 µM-1min-1mL) and phosphatases (3.46±0.31µM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin could establish a unique niche for ecological adaptation during symbiosis with the host Frankincense tree.


Assuntos
DNA Fúngico/análise , Fungos/classificação , Fungos/isolamento & purificação , Árvores/crescimento & desenvolvimento , Endófitos/classificação , Endófitos/isolamento & purificação , Eurotiales/genética , Eurotiales/isolamento & purificação , Franquincenso/metabolismo , Fungos/genética , Fungos não Classificados/genética , Fungos não Classificados/isolamento & purificação , Ácidos Indolacéticos , Filogenia , Folhas de Planta/microbiologia , Caules de Planta/microbiologia , Árvores/química , Árvores/microbiologia
17.
J Clin Microbiol ; 54(8): 2155-61, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27280422

RESUMO

Penicillium species are some of the most common fungi observed worldwide and have an important economic impact as well as being occasional agents of human and animal mycoses. A total of 118 isolates thought to belong to the genus Penicillium based on morphological features were obtained from the Fungus Testing Laboratory at the University of Texas Health Science Center in San Antonio (United States). The isolates were studied phenotypically using standard growth conditions. Molecular identification was made using two genetic markers, the internal transcribed spacer (ITS) and a fragment of the ß-tubulin gene. In order to assess phylogenetic relationships, maximum likelihood and Bayesian inference assessments were used. Antifungal susceptibility testing was performed according to CLSI document M38-A2 for nine antifungal drugs. The isolates were identified within three genera, i.e., Penicillium, Talaromyces, and Rasamsonia The most frequent species in our study were Penicillium rubens, P. citrinum, and Talaromyces amestolkiae The potent in vitro activity of amphotericin B (AMB) and terbinafine (TRB) and of the echinocandins against Penicillium and Talaromyces species might offer a good therapeutic alternative for the treatment of infections caused by these fungi.


Assuntos
Antifúngicos/farmacologia , Eurotiales/efeitos dos fármacos , Eurotiales/isolamento & purificação , Micoses/diagnóstico , Animais , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Eurotiales/classificação , Eurotiales/genética , Humanos , Testes de Sensibilidade Microbiana , Técnicas de Tipagem Micológica , Micoses/veterinária , Filogenia , Análise de Sequência de DNA , Tubulina (Proteína)/genética , Estados Unidos
18.
Appl Microbiol Biotechnol ; 100(1): 505-18, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26450509

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment receptor proteins (SNAREs) are essential components of the yeast protein-trafficking machinery and are required at the majority of membrane fusion events in the cell, where they facilitate SNARE-mediated fusion between the protein transport vesicles, the various membrane-enclosed organelles and, ultimately, the plasma membrane. We have demonstrated an increase in secretory titers for the Talaromyces emersonii Cel7A (Te-Cel7A, a cellobiohydrolase) and the Saccharomycopsis fibuligera Cel3A (Sf-Cel3A, a ß-glucosidase) expressed in Saccharomyces cerevisiae through single and co-overexpression of some of the endoplasmic reticulum (ER)-to-Golgi SNAREs (BOS1, BET1, SEC22 and SED5). Overexpression of SED5 yielded the biggest improvements for both of the cellulolytic reporter proteins tested, with maximum increases in extracellular enzyme activity of 22 % for the Sf-Cel3A and 68 % for the Te-Cel7A. Co-overexpression of the ER-to-Golgi SNAREs yielded proportionately smaller increases for the Te-Cel7A (46 %), with the Sf-Cel3A yielding no improvement. Co-overexpression of the most promising exocytic SNARE components identified in literature for secretory enhancement of the cellulolytic proteins tested (SSO1 for Sf-Cel3A and SNC1 for Te-Cel7A) with the most effective ER-to-Golgi SNARE components identified in this study (SED5 for both Sf-Cel3A and Te-Cel7A) yielded variable results, with Sf-Cel3A improved by 131 % and Te-Cel7A yielding no improvement. Improvements were largely independent of gene dosage as all strains only integrated single additional SNARE gene copies, with episomal variance between the most improved strains shown to be insignificant. This study has added further credence to the notion that SNARE proteins fulfil an essential role within a larger cascade of secretory machinery components that could contribute significantly to future improvements to S. cerevisiae as protein production host.


Assuntos
Celulase/metabolismo , Expressão Gênica , Proteínas SNARE/biossíntese , Saccharomyces cerevisiae/metabolismo , Celulase/genética , Eurotiales/enzimologia , Eurotiales/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas SNARE/genética , Saccharomyces cerevisiae/genética , Saccharomycopsis/enzimologia , Saccharomycopsis/genética
19.
Mycoses ; 58(8): 506-10, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26058584

RESUMO

We report the isolation of the emerging fungal pathogen Rasamsonia aegroticola, which belongs Rasamsonia argillacea species complex, from a respiratory sample of a patient with cystic fibrosis. This filamentous fungus, resembling members of a Penicillium and Paecilomyces spp., was identified by morphology and confirmed by DNA sequence analysis. Susceptibility pattern showed high minimal inhibitory concentration of voriconazole and amphotericin B but low minimal inhibitory concentration of caspofungin, micafungin and itraconazole.


Assuntos
Fibrose Cística/complicações , Fibrose Cística/microbiologia , Eurotiales/isolamento & purificação , Micoses/complicações , Micoses/microbiologia , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Caspofungina , Equinocandinas/farmacologia , Eurotiales/citologia , Eurotiales/efeitos dos fármacos , Eurotiales/genética , Humanos , Lipopeptídeos , Masculino , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Faringe/microbiologia , Análise de Sequência de DNA , Eslovênia , Voriconazol/farmacologia , Adulto Jovem
20.
Environ Microbiol ; 17(8): 2952-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25753751

RESUMO

Many obligate symbiotic fungi are difficult to maintain in culture, and there is a growing need for alternative approaches to obtaining tissue and subsequent genomic assemblies from such species. In this study, the genome of Elaphomyces granulatus was sequenced from sporocarp tissue. The genome assembly remains on many contigs, but gene space is estimated to be mostly complete. Phylogenetic analyses revealed that the Elaphomyces lineage is most closely related to Talaromyces and Trichocomaceae s.s. The genome of E. granulatus is reduced in carbohydrate-active enzymes, despite a large expansion in genome size, both of which are consistent with what is seen in Tuber melanosporum, the other sequenced ectomycorrhizal ascomycete. A large number of transposable elements are predicted in the E. granulatus genome, especially Gypsy-like long terminal repeats, and there has also been an expansion in helicases. The metagenome is a complex community dominated by bacteria in Bradyrhizobiaceae, and there is evidence to suggest that the community may be reduced in functional capacity as estimated by KEGG pathways. Through the sequencing of sporocarp tissue, this study has provided insights into Elaphomyces phylogenetics, genomics, metagenomics and the evolution of the ectomycorrhizal association.


Assuntos
Bradyrhizobiaceae/genética , DNA Fúngico/genética , Eurotiales/genética , Carpóforos/genética , Genoma Fúngico/genética , Metagenoma , Sequência de Bases , Bradyrhizobiaceae/classificação , Elementos de DNA Transponíveis/genética , Eurotiales/classificação , Metagenômica , Microbiota/genética , Micorrizas/genética , Filogenia , Análise de Sequência de DNA , Talaromyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...